

Curves of genus one

Lemma X is proper genus one

- 1) $\omega_X \cong \mathcal{O}_X$
- 2) $\deg(\mathcal{L}) > 0 \Rightarrow h^0(\mathcal{L}) = \deg(\mathcal{L})$
- 3) $\deg(\mathcal{L}) = 1 \Rightarrow \exists q \in X(\mathbb{k}) : \mathcal{L} \cong \mathcal{O}_X(q)$
- 4) $\deg(\mathcal{L}) \geq 2 \Rightarrow \mathcal{L}$ globally generated
- 5) $\deg(\mathcal{L}) \geq 3 \Rightarrow \mathcal{L}$ very ample.

Pf By Riemann - Roch:

$$\begin{aligned} \deg(\omega_X) &= 0 \\ h^0(\omega_X) &= 1 \end{aligned} \quad \left. \right\} \Rightarrow \omega_X \cong \mathcal{O}_X$$

2), 4), 5) immediate special cases e.g.

$$h^0(\mathcal{L}) = 1 - g + \deg(\mathcal{L})$$

$$3) \deg(\mathcal{L}) = 1 = h^0(\mathcal{L})$$

$$\begin{aligned} \Rightarrow \mathcal{L} &\cong \mathcal{O}_X(\text{div}(s)) & s \in H^0(\mathcal{L}) \setminus \{0\} \\ &\cong \mathcal{O}_X(q) & \Rightarrow \text{div}(s) \text{ effective} \\ & & \text{degree one} \end{aligned}$$

□

Cor X is proper genus one curve / $\mathbb{k} = \overline{\mathbb{k}}$

$$\mathcal{O}_X(-) : X(\mathbb{k}) \longrightarrow \text{Pic}^1(X) \quad q \mapsto \mathcal{O}_X(q)$$

Pf inj. by ex.sh. 4, surj. by lemma 3) □.

Def An elliptic curve / \mathbb{k} is a proper genus one curve E w/ a \mathbb{k} -point $e \in E(\mathbb{k})$

Prop Let (E, e) be an elliptic curve.

Then E is isomorphic to a cubic curve

$$y^2z + a_1xyz + a_3yz^2 = x^3 - a_2xz^2 - a_4xz^2 - a_6z^3$$

where $a_i \in k$.

If $\text{char}(k) \neq 2$, then E is isomorphic to a cubic of the form

$$y^2z = x^3 - a_2xz^2 - a_4xz^2 - a_6z^3$$

If $\text{char}(k) \neq 2, 3$, then E is isomorphic to a cubic of the form

$$y^2z = x^3 - a_4xz^2 - a_6z^3$$

The isomorphism can be chosen s.t. $e \mapsto [0:1:0]$

Proof We use embedding(s) given by the very ample line bundle $\mathcal{O}_E(3e)$:

$$i: E \hookrightarrow \mathbb{P}(H^0(\mathcal{O}_E(3e))) \cong \mathbb{P}^2$$

$$H^0(\mathcal{O}(e)) \subseteq H^0(\mathcal{O}(2e)) \subseteq H^0(\mathcal{O}(3e)) \subseteq H^0(\mathcal{O}(4e)) \subseteq H^0(\mathcal{O}(5e)) \subseteq H^0(\mathcal{O}(6e))$$

\uparrow 1 x y x^2 xy x^3, y^2

$$\Rightarrow \underbrace{H^0(\mathcal{O}(6e)) / H^0(\mathcal{O}(5e))}_{1\text{-dimensional.}} = \text{span} \{ [x^3], [y^2] \}$$

$$\Rightarrow \exists u, v \in k^\times, a'_1, a'_2, a'_3, a'_4, a'_6 \in k \text{ s.t.}$$

$$uy^2 + a'_1xy + a'_3y = ux^3 - a'_2x^2 - a'_4x - a'_6$$

replace y by u^2vy and x by uvx :

$$u^4v^3y^2 + a''_1xy + a''_3y = u^4v^3x^3 - a''_2x^2 - a''_4x - a''_6$$

divide by $u^4 v^3$:

$$y^2 + a_1 xy + a_3 y = x^3 - a_2 x^2 - a_4 x - a_6$$

Specify $i: E \hookrightarrow \mathbb{P}^2$ by the line bundle with globally generating sections $(\mathcal{O}_E(3e), (x, y, 1))$ as chosen above.

$$E \subseteq \mathbb{V} \underbrace{(y^2 + a_1 xy + a_3 y^2 - x^3 - a_2 x^2 - a_4 x - a_6)}_{\text{integral.}}$$

$$\Rightarrow E \cong \mathbb{V}(-^n \text{---})$$

If $\text{char}(k) \neq 2$, can replace y by $y - \frac{1}{2}(a_1 x + a_3)$

$$(y^2 + a_1 xy + a_3 y) = (y + \frac{1}{2}(a_1 x + a_3))^2 - (\frac{1}{2}(a_1 x + a_3))^2$$

$$\text{so that } y^2 = x^3 + \tilde{a}_2 x^2 + \tilde{a}_4 x + \tilde{a}_6$$

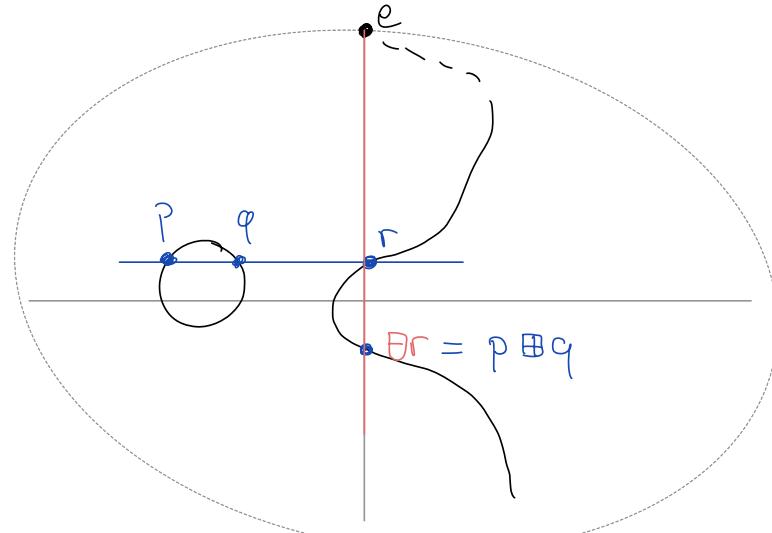
If $\text{char}(k) \neq 2, 3$, can replace x by $x - \frac{1}{3}\tilde{a}_2$

x has a pole of order 2 at e
 y has a pole of order 3 at e

$$\Rightarrow [x(e):y(e):1] = [\underbrace{\frac{x(e)}{y(e)}}_{\equiv 0} : 1 : \underbrace{\frac{1}{y(e)}}_{\equiv 0}] \quad \square$$

$$\text{Rmk } x \mapsto u^2 x, y \mapsto u^3 y$$

then get new Weierstrass eqn w/
 coefficients $u^{-i} a_i$



The group law:

let (E, e) be an elliptic curve.

We have a canonical bijection

$$\begin{array}{ccc} E(k) & \longrightarrow & \text{Pic}^1(E) \\ q \longmapsto & \mathcal{O}_X(q) & \longmapsto \mathcal{O}_X(q-e) \\ & & \mathcal{L}(e) \longleftarrow 1 \longleftarrow \mathcal{L} \end{array}$$

which endows $E(k)$ with a group structure.

$$(E(k), \boxplus, e)$$

where $\boxplus : E(k) \times E(k) \rightarrow E(k)$ can be

explicitly described by: $\forall p, q, r \in E(k)$

$$p \boxplus q \boxplus r = \infty \Leftrightarrow \mathcal{O}(p+q+r) \cong \mathcal{O}(3e) = i^* \mathcal{O}(1)$$

$\Leftrightarrow p, q, r$ are the intersection pts
of a line $l \subset \mathbb{P}^2$ with E
in its Weierstrass embedding.

Since intersection points can be described
explicitly as rational functions in the
coordinates, can upgrade E to a
group variety. We give a more abstract app.

Jacobians

Def (degree 0 Picard functor)

X ns proper curve over $k = \bar{k}$

T scheme over k .

$$\text{Pic}^0(X \times T) := \left\{ \mathcal{L} \in \text{Pic}(X \times T) \mid \forall t \in T \quad \mathcal{L}|_t \in \text{Pic}^0(X_t) \right\}$$

$$\text{pr}_T^*: \text{Pic}(T) \rightarrow \text{Pic}^0(X \times T)$$

b/c pr_T^* is trivial on each fibre.

$$\text{Pic}^0(X/T) := \text{Pic}^0(X \times T) / \text{pr}_T^* \text{Pic}(T)$$

$$\text{Pic}_X^0: \text{Sch}_k^{\text{op}} \rightarrow \text{Sets}$$

$$T \mapsto \text{Pic}^0(X/T)$$

$$f: T \rightarrow S \mapsto f^*: \text{Pic}(X/S) \rightarrow \text{Pic}(X/T)$$

Is the degree 0 Picard functor of X

Def (Jacobian)

The Jacobian of a curve X is

a scheme $\text{Jac}(X)$ together with

a "universal degree 0 line bundle

$\mathcal{U} \in \text{Pic}^0(X/\text{Jac}(X))$ s.t. for

any $T \in \text{Sch}_k$, $\mathcal{L}_T \in \text{Pic}^0(X/T)$ there
is a ^{unique} morphism $f: T \rightarrow \text{Jac}(X)$ s.t.

$$f^* \mathcal{U} = \mathcal{L}_T$$

Rank $\text{Jac}(X)$ is unique if it exists

Theorem X is proj. curve $/k$.

then $\text{Jac}(X)$ exists and is an abelian variety of dimension $g(X)$.

We will show existence and dimension only for X of genus one.

Reason that $\text{Jac}(X)$ is a commutative group scheme:

Need to give a morphisms

$$\mu: \text{Jac}(X) \times \text{Jac}(X) \longrightarrow \text{Jac}(X)$$

$$\text{and } e: \text{pt} \longrightarrow \text{Jac}(X)$$

satisfying certain compatibility conditions.

for μ can take the morphism corresponding to the line bundle,

$$\text{pr}_1^* \mathcal{U} \otimes \text{pr}_2^* \mathcal{U} \in \text{Pic}_X^0(\text{Jac}(X)^{\times 2})$$

for e can take morphism corresponding to $\mathcal{O}_X \in \text{Pic}_X^0(\text{pt})$

Definition of inverse?

D

Theorem Let (E, e) be an elliptic curve.

Then E together with the line bundle

$$\mathcal{U}_E := \bigoplus_{\Delta \in E} \mathcal{O}(1) \otimes \text{pr}_1^* \mathcal{O}_E(-e) \in \text{Pic}^0_{\bar{E}}(E)$$

is the Jacobian variety for E .

Pf later (need cohomology and base change)
which is an extremely useful technical tool to know about. \square

Cor If X is a genus one curve, then $\text{Aut}(X) \curvearrowright X$ is transitive.

Pf pick $e \in X(k)$ making X into a group scheme with identity $e \in X$.

$\forall x \in X(k)$ $\varphi : X \longrightarrow X$
 $p \longmapsto xp$
is an automorphism with $\varphi(e) = x$ \square

j-invariant

Suppose $\text{char}(k) \neq 2$. (E, e) elliptic curve / k with Weierstrass form $y^2 = x^3 + a_2 x^2 + a_4 x + a_6$

$$\begin{array}{ccc} \pi : E & \rightarrow & \mathbb{P}(\mathcal{H}^0(\mathcal{O}(2e))) \cong \mathbb{P}_{x,z}^1 \text{ hyperelliptic} \\ & \searrow & \uparrow \pi^1 \\ & & \mathbb{P}_{x,y,z}^2 \text{ Weierstrass} \\ & & \text{form} \end{array}$$

$$\begin{aligned} \pi(e) &= \pi^1([x(e) : y(e) : 1]) \\ &= \pi^1\left(\left[\frac{x(e)}{y(e)} : 1 : \frac{1}{y(e)}\right]\right) \\ &= \left[\frac{x(e)}{y(e)} : \frac{1}{y(e)}\right] = [1 : 0] = \infty \in \mathbb{P}^1 \end{aligned}$$

vanishes to higher order

$\Rightarrow \pi$ ramified at ∞ and zeroes (x_i) of

$$x^3 + a_2 x^2 + a_4 x + a_6 = (x-a)(x-b)(x-c)$$

$\text{PGL}(2) \curvearrowright \mathbb{P}^2$ is three transitive: hidden choice of order

$$\text{replace } x \mapsto \frac{x-a}{b-a} : \text{wlog} \quad \stackrel{\text{hidden choice of order}}{=} x(x-1)(x-2)$$

$$\left| \frac{c-a}{b-a} \right|$$

ic

Corollary If $\text{char}(k) \neq 2$

every elliptic curve is isomorphic

to a cubic of the form $y^2 = x(x-1)(x-2)$

Lemma The elliptic curves

$$E_\lambda \quad y^2 = x(x-1)(x-\lambda) \quad \lambda \neq 0, 1$$

$$E_{\lambda'} \quad y^2 = x(x-1)(x-\lambda') \quad \lambda' \neq 0, 1$$

are isomorphic iff

$$\lambda' \in \left\{ \lambda, \frac{1}{\lambda}, 1-\lambda, \frac{1}{1-\lambda}, \frac{\lambda}{\lambda-1}, \frac{\lambda-1}{\lambda} \right\} = S_3 \cdot \lambda$$

Pf If $E_\lambda \cong E_{\lambda'}$, then $\lambda' = \frac{c-a}{b-a}$

where $a, b, c \in \{0, 1, \lambda\}$, since they must be in the same linear system.

Similarly if $\lambda' = \frac{c-a}{b-a}$ for $a, b, c \in \{0, 1, \lambda\}$
then the substitution yields an iso \square

Def (j-invariant)

$$j(\lambda) := 2^8 \frac{(\lambda^2 - \lambda + 1)^3}{\lambda^2(\lambda - 1)^2}$$

Key point:

Prop: (1) Two elliptic curves are isomorphic iff their j-invariants are the same.

(2) For any $j \in k$ there is an elliptic curve \mathcal{E} with $j\text{-invariant} = j$

Proof (1) follows from

$$j(\lambda) = j(\lambda') \text{ iff } \lambda' \in S_3 \cdot \lambda$$

(2) solve equation

$$j = \frac{2^8 (\lambda^2 - \lambda + 1)}{\lambda^2 (\lambda - 1)^2}$$

for λ .

$$\Rightarrow j(E_\lambda) = j$$

□.

The involution $[x:y:z] \mapsto [x:-y:z]$

restricts to E and commutes with π

$\tau: E \rightarrow E$ "hyperelliptic involution"

$\downarrow \pi \downarrow$ corresponding to the

non-trivial element of the Galois extension

$$K(E)/K(\mathbb{P}^1)$$

Lemma Let X be a genus one

curve $\pi_1, \pi_2: X \rightarrow \mathbb{P}^1$ deg. 2 map.

Then there are automorphisms

$\varphi \in \text{Aut}(X)$, $\tau \in \mathbb{P}^1$ s.t.

$$X \xrightarrow{\varphi} X$$

$$\begin{array}{ccc} \pi_1 & \downarrow & \downarrow \pi_2 \\ \mathbb{P}^1 & \xrightarrow{\tau} & \mathbb{P}^1 \end{array}$$

commutes.

Pf let $p_1 \in \text{Ran}(\pi_1)$, $p_2 \in \text{Ran}(\pi_2)$
choose $\varphi \in \text{Aut}(X)$ s.t. $\varphi(p_1) = p_2$
Then both $\pi_2 \circ \varphi$ and π_1
are ramified at p_1 and correspond
to map given by $\mathcal{O}_X(2p_1)$ \square .

Prop (E, e) elliptic curve
 $\text{Aut}(E, e)$ finite of order.

- 2 if $j(E) \neq 0, 1728$
- 4 if $j = 1728$ $\text{char}(k) \neq 3$
- 6 if $j = 0$ $\text{char}(k) \neq 3$
- 12 if $j = 0 (= 1728)$ $\text{char}(k) = 3$

Pf $E = E_\lambda \xrightarrow{\pi} \mathbb{P}^1$
 \Rightarrow For any $\varphi \in \text{Aut}(E, e)$ $\exists \tau \in \text{Aut}(\mathbb{P}^1)$
s.t. $\pi \circ \varphi = \tau \circ \pi$
and τ permutes $\{0, 1, \infty\}$
 $\Rightarrow |\text{Aut}(E, e)| \leq |\text{Aut}(\pi)| |S_3| = 12$

if $\tau = \text{id} \Rightarrow \varphi = \text{id}$ or id .

if $\tau \neq \text{id} \Rightarrow \lambda \in \left\{ \frac{1}{\lambda}, 1-\lambda, \frac{1}{1-\lambda}, \frac{\lambda}{\lambda-1}, \frac{\lambda-1}{\lambda} \right\}$
rest is

"Elementary argument"

"Model of elliptic curves is DM"

\square